
DynaCred on ByzCoin
The ByzCoin network has a test-net up and running, and first applications are starting to use
it. Currently there are a lot of open “work in progress”, but it’s running stable. One of the first
applications that started on the DEDIS blockchain was the personhood app, providing a
simple way of setting up personhood-parties. Following the personhood-parties came the
effort of providing an identity service that includes multiple sources to create a reliable proof
that a certain account is held by a human being instead of a bot.

In the C4DT, an effort has been started to present a demonstrator of the omniledger
technology (which is currently only a byzcoin implementation), and the first use-case of this
demonstrator is a decentralized credential system that is used for the login service to the
restricted parts of the c4dt-website and the matrix-chat.

This document describes the different technical elements of this login system, and how it
uses byzcoin contracts to implement users.

Parts of the system
The following figure shows a very rough overview of the different system parts that will be
described in this document:

- ByzCoin blockchain: a set of nodes come to a consensus every n seconds on what
the new global state of the chain should be. The global state consists of instances.
Every instance:

- is linked to a contract defining what actions can be done (with a few
exceptions like signer counters that don’t have a contract attached)

- has a darc attached to it that defines the rules to execute the available actions

https://pop.dedis.ch/
https://c4dt.org/

- has data that is stored in all nodes
- ByzCoin Admins are set up at the beginning of a byzcoin blockchain and can evolve

over time. The admins rarely interact with the chain. If they do, they commit one of
the following actions:

- Add or remove a node to the system
- Add or remove an admin to the system

- Every admin can have different access rights
- User accounts are a set of different instances linked together as described in the rest

of this document

Life-cycle of the System
When a new ByzCoin system is set up, there exists an Admin darc, which is currently held
by the DEDIS lab at EPFL. In a first bootstrap phase, the C4DT darc, the spawner, and the
first user are created.
Every subsequent user creation uses the spawner instance to spawn all other needed
instances.

Bootstrap Phase
Out of the Admin darc, a C4DT darc has been spawned and given to the C4DT. This darc is
a universal darc that is allowed to spawn whatever instances it wants. The only difference
with the Admin darc is that the C4DT darc cannot change the configuration of the ByzCoin
blockchain.
In a first step, the C4DT darc is used to create a spawner instance and the AdminC4DT
user. The spawner darc can be configured with the costs of the different instances it creates,
see Appendix A. The first user is created directly by the C4DT darc and has exactly the
same instances as every subsequent user.
The final picture within the Global State of ByzCoin after the bootstrap phase looks like this.
Every box in this picture is an instance in the Global State of ByzCoin:

The following observations can be made about the user:

- The user already has 2 devices setup that are allowed to sign on behalf of the signer
darc

- Each instance has its own darc that defines the rules specific to that instance. This is
mostly for easier handling in the backend and to separate the devices-darcs from the
other darcs.

- Each device darc represents one device that the user holds. A user can give access
to his structure by adding a new device-darc with a new public key, and changing the
_sign and invoke:darc.evolve rules of the signer darc

- The signer darc is referenced by all the other darcs in the user.

Subsequent User Creation
Once the bootstrap phase is over, the C4DT darc is not needed anymore for user creation,
but only to mint coins for the users.
To create a new user, the AdminC4DT user can directly instruct the spawner instance to
create all the necessary instances. The spawner has a list of costs for the different instances
it can spawn. Once the new user has been created, part of the global state looks like this:

The current implementation uses only one type of coin for every cost, but the C4DT darc
could decide that the different costs are covered by different types of coins, allowing to give
only certain coins to users who then could only spawn certain instances.

User Creation Details
Following are some details with regard to the creation of a new user by the spawner.

Costs
For a standard user, the following cost occurs:

- 4 darcs = 4 * 100
- 1 coin = 1 * 100
- 1 credential = 1 * 1’000

For more details, look at Appendix A. This is somewhat arbitrary, but reflects the idea that a
credential is more load to the system than a darc or a coin, as the credential will be updated
more often and can grow larger in size.

Ephemeral Private Key
The standard setup of a new user should be like this:

1. The new user chooses a keypair and sends the public key to the admin
2. The admin creates the new user using the public key

However, to avoid the user having to send something to the admin, the current code does
the following:

1. The admin
a. choses an ephemeral keypair
b. creates the new user with this keypair
c. Sends the private key to the new user

2. The new user
a. Choses a random keypair
b. Evolves the device darc and replaces the ephemeral keypair of the admin

with his own keypair

This allows the admin to directly send a signup link to a new user, without having to do a
back-and-forth between the new user and the admin. Once the device darc has been
updated to the new keypair, the admin cannot change the darc anymore.
If the system should allow recovery of the user by the admin, the user signer darc can point
to a recovery device darc that holds the public key of the admin. If needed, the admin can
then evolve the signer darc to change the devices of the user.

User Identities
The global ID of a user should be the credentialID, which is the instance ID of the credential
instance, because it allows to find all the different pieces of the user. This id should be used
when exchanging contacts.
For referencing a user in a darc, the darc:signer should be used, because it represents all
the devices the user has access to. If an application has the credentialID, it can get the
credential-darc and the signer-darc very easily. The inverse is not always possible.

Creation of Actions and Groups
Darcs are very general and allow for multiple use-cases. For the C4DT demonstrator, we
use them to implement the following two use-cases:

- Action, which is not tied directly to an instance per se, but describes in its _sign rule
who is allowed to execute a certain action outside of the system. For the moment we
use two actions in the C4DT demonstrator:

a. Login_C4DT_web - defines which users are allowed to visit the restricted
pages in the c4dt site. The logins are done anonymously, all users are
mapped to only one web-user

b. Login_C4DT_matrix - defines which users are allowed to use the SSO of
matrix to login. The logins are pseudonymous using parts of the credential-id
of the user

- Group, federating users together, and giving the possibility of handling users in a
decentralized way. In the current demonstrator, each industrial partner will be in a
group darc.

This setup allows to delegate the responsibility of creating and managing users to the
partners, while giving C4DT control to whom it allows to access its resources.
A typical setup looks like this:

CAS Login with OmniLedger Credentials
CAS technical details are available in the repo.

First, let it be noted that when creating an Action, a CoinInstance is also created to be able
to CAS-login it. This CoinInstance is used to generate a login proof.

The interaction between the user, the service, and the blockchain is shown in the following
figure:

1. The user connects to the wanted service and gets redirected to the login javascript
2. The web-client calls `ByzCoinRPC.checkAuthorization` to see if the user is part of the

given Action. It is used as a preamble to have a fast way of showing if the user is
able to login or not. As the node might be dishonest, this call is insecure

3. The user generates a random challenge, hashes it to the hashedChallenge and puts
the hashedChallenge in an argument of a coin transaction from the user’s
coin-instance to the Action’s coin-instance and back, so that the hashedChallenge
will be stored on the blockchain

4. ByzCoin verifies that the transaction is valid by verifying that the user has the right to
call the `_sign` rule on the Action

5. The user sends its challenge and his userID to the service. Only the user can know
the original challenge, because the hashedChallenge cannot be reversed

6. The CAS server looks at the recently added transactions and searches for a
transaction matching this public challenge. Then it verifies that

a. the given userID matches the coin-instance used in the transaction

https://github.com/c4dt/omniledger/tree/master/webapp/cas

b. that the public challenge is indeed the hash of the challenge
7. If there is no error in step 6, access is granted.

For more details how the CAS server verifies the validity of the login-ticket, see
https://github.com/c4dt/omniledger/blob/master/webapp/cas/service_validate.go

Note: the login ticket is the concatenation of the UserID and the challenge, as we need to
find the user’s CoinInstance and its alias.

https://github.com/c4dt/omniledger/blob/master/webapp/cas/service_validate.go

Appendix A - Details of Contracts
This section holds more details about the contracts used.

Distributed Access Right Control
A central part of how ByzCoin handles the access rights are the DARCs. A darc is described
in the paper “Chainiac” from Nikitin Kirill et al. A darc

- is tied to one or more resources and holds rules that define who is allowed to access
these resources

- can be evolved, meaning that the rules can be changed. Every time a darc evolves,
the darc version is increased by one

- has an identity that is calculated by taking the hash of version 0
- Exists in offline mode (as described in the paper) and online mode (as used in

byzcoin), the difference being how to prove what the latest version of the darc is

The following figure gives an overview of a darc:

The rules for darcs on byzcoin are of the following format:
(invoke|spawn|delete):contractID(\.command)?
A special rule named _sign is the delegation rule, that allows a darc to be used in another
context.
Every rule is tied to an expression made out of identities and operators. An identity is either
a public key (currently only ed25519 and p256 are supported) or a darc. If the identity is a
darc, then the _sign rule of that darc is used to evaluate the expression.
The operators of the expression are:

- | for ORing identities together (either identity 1 OR identity 2 must sign)
- & for ANDing identities together (identity 1 AND identity 2 must sign)
- () for grouping operators

Future operators should include:
- Thresh(n, id1, id2, …) for defining threshold signing

Restricted and Unrestricted Darcs
For security reasons, normal, restricted darcs are not allowed to add new rules. This is to
avoid that a user can evolve a darc and be able to spawn instances without the consent of
the admin.

https://www.usenix.org/system/files/conference/usenixsecurity17/sec17-nikitin.pdf

Unrestricted darcs are allowed to add new rules.
The two darcs are implemented as two different contracts.

Spawner Contract
The byzcoin system depends mainly on darcs to define who is allowed to create instances.
For a general user handling, this is not useful, as we want to limit the possibilities of users to
create new instances. If every user could create an infinite amount of instances, the system
would very quickly be flooded. Using the available coins in byzcoin, a spawner contract is
defined by the main admin, which can be used to spawn new instances.
A Transaction that wants to spawn a new instance will have at least two instructions:

1. Fetch coins - remove coins from a coin instance and put it on the stack
2. Spawn instance - call the spawner contract, which will consume the coins and create

the instance
The second step can be repeated in the same transaction, as long as there are enough
coins on the stack. The following costs are defined in the spawner contract:

- Darc
- Coin
- Credential
- CalypsoWrite
- PopParty
- RoPaSci (Rock Paper Scissors)

A special mention is the CalypsoWrite contract, as it must allow the spawning of
CalypsoRead instances. To allow this, the CalypsoWrite instance also has a ‘cost’ field that
defines how many coins must be available before spawning a new CalypsoRead instance.

Appendix B - TODO List

Proposed Extension
Problem: C4DT uses the omniledger-demonstrator that incorporates a user-management
system. As more and more users are signed up to the system, it gets difficult to manage
them, even if we suppose that the users are handled by the affiliated partners and labs.

Proposed solution: Create a directory service that allows admins to share user-IDs and
some tags attached to it, so that whatever one admin does (adding, removing, modifying)
can be viewed by another admin.

CAS Login
The CAS Login should be identified by the ID of the coin-instance, as the coin-instance
points to the DARC:

Phonebook extension
The first version of the omniledger interface had only a list of contacts, DARCs, and actions,
but there are a few problems with that:

● As more contacts get added, the list becomes long
● All items are loaded when connecting to omniledger, which takes a long time
● If you want to link to a contact, you need to ask the creator of the contact for the ID

To solve these problems, here comes the phonebook! It has the following properties:

●
● It is stored encrypted on the blockchain, using calypso
● It contains a list of IDs that point to one of

○ Credential
○ DARC (for groups)
○ Coin (for LoginCAS)
○ Phonebook

● When creating a user, a Phonebook is also created and linked in its credentials
● The UI keeps a cache of all phonebook entries as a

map<ID, PhonebookElement>
It is used as a local cache of the actual phonebook entries. PhonebookElement is
a structure of

○ Description string

○ Type oneof(credential, darc, login, phonebook)

● On startup, the UI updates the cache by checking whether there is a change in any of
the known phonebooks. If so, the changed phonebook is read and the internal cache
(stored in storageDB) is updated.

The phonebook points to a value-instance and has at least 3 instances:

Creation
Upon creation of a phonebook, the user has to give the DARCs that define the writers,
readers, and admins to the phonebook.

