Projects

All projects Privacy Protection & CryptographyBlockchains & Smart ContractsSoftware VerificationDevice & System SecurityMachine LearningFinanceHealthGovernment & HumanitarianCritical InfrastructureDigital Information
Mar 2020 → Feb 2021 Project

ROBIN - Robust Machine Learning

Partner: armasuisse
Partner contact: Gérôme Bovet
EPFL laboratory: Signal Processing Laboratory (LTS4)
EPFL contact: Prof. Pascal Frossard

In communication systems, there are many tasks, like modulation recognition, for which Deep Neural Networks (DNNs) have obtained promising performance. However, these models have been shown to be susceptible to adversarial perturbations, namely imperceptible additive noise crafted to induce misclassification. This raises questions about the security but also the general trust in model predictions. In this project, we propose to use adversarial training, which consists of fine-tuning the model with adversarial perturbations, to increase the robustness of automatic modulation recognition (AMC) models. We show that current state-of-the-art models benefit from adversarial training, which mitigates the robustness issues for some families of modulations. We use adversarial perturbations to visualize the features learned, and we found that in robust models the signal symbols are shifted towards the nearest classes in constellation space, like maximum likelihood methods. This confirms that robust models not only are more secure, but also more interpretable, building their decisions on signal statistics that are relevant to modulation recognition.

TopicsDevice & System SecurityMachine Learning

View